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e IMPORTANT PUBLICATIONS (see list below)

Nature of MHD turbulence

Magnetohydrodynamics (MHD) is the reference model to describe the large-scale dynamics of the
visible matter in the universe, which is essentially (99%) in the form of plasma (Galtier, 2016 [A71]).
As shown by the observations of the close (heliosphere) and farther (interstellar medium) environments,
space and astrophysical plasmas are turbulent. Therefore, it is important to understand the fundamentals
of MHD turbulence. Since the seminal papers by Iroshnikov (1964) and Kraichnan (1965), MHD
turbulence is thought to have its origin in the stochastic collisions of counter propagating Alfvén
(incompressible MHD) waves. The phenomenological model based on this idea predicts an isotropic
energy spectrum different from that of hydrodynamics based on the interaction of vortices. However, in
the 1980s it was realized that in the presence of a large-scale magnetic field By — a necessary condition
for the generation of Alfvén waves — the energy redistribution mechanism is non-isotropic with a
weakening of the turbulent cascade along the By direction (Montgomery & Turner, 1981; Shebalin et
al., 1983). A first unsuccessful attempt to develop a theory for Alfvén wave turbulence (Sridhar &
Goldreich, 1994) led to some confusion about the elementary bricks of MHD turbulence (Ng &
Bhattacharjee, 1996).

We published (Galtier et al., 2000 [A8]) a rigorous theory called Wave Turbulence (see eg. Nazarenko,
2011) which is based on an asymptotic (and uniform) development of statistical quantities (two-point
correlations) in Fourier space. We explained why three-wave resonant interactions are dominant at main
order in the nonlinear transfer of energy from large to small scales, and how these transfers become non-
isotropic with a cascade frozen along By. The subtle point is that three-wave interactions always involve
the slow mode (k/=0, k, being the component of k along the By direction). We found the exact stationary
solution (called Kolmogorov-Zakharov spectrum) which scales in the simplest case as k.. We showed
that Alfvén wave turbulence becomes strong at small scales. The numerical simulation of the wave
turbulence equations (called kinetic equations) revealed the existence during the non-stationary phase
of an energy spectrum not compatible with the stationary solution. This is the first time that this spectral
anomalous was detected in turbulence. It is now widely found in weak and strong turbulence and is
understood as a self-similar solution of the second kind (Thalabard et al., 2015 [A66]). By solving this
major problem of plasma physics, the Alfvén wave turbulence theory has become a reference (third most
cited paper of J. Plasma Physics created in 1968) as it clarifies the fundamentals of MHD turbulence.
Since then, Alfvén wave turbulence has been mentioned to explain measurements in the Jovian
magnetosphere (Saur et al., 2002) and to describe the solar coronal loops (Rappazzo et al., 2007). Over
the last ten years, I have returned to this fundamental problem to demonstrate the feasibility of such a
regime using 3D direct numerical simulations. This is a non-trivial task as it requires the use of massive
numerical resources and the development of specific tools dedicated to wave turbulence. With young
researchers, we have succeeded in reproducing this regime. The very detailed study also allowed us to
reveal new properties, including the transition from weak to strong wave turbulence described by the
critical balance phenomenology (Meyrand, Kiyani & Galtier, 2015 [A65]; Meyrand, Galtier & Kyiani,
2016 [A67]).

Rotating hydrodynamic turbulence

The Navier-Stokes equations are generally considered the archetypal model for studying turbulence.
This is so commonly accepted that the word ‘turbulence’ is often used as a synonym for ‘incompressible
hydrodynamic (vortex) turbulence’. It is true that the first experiments, concepts and results emerged
from the study of water (Galtier, 2023 [A102]), however Navier-Stokes equations are somewhat singular
since waves are not present while they are found in almost all physical systems. Among the limited
results of vortex turbulence, the exact law of Kolmogorov (1941) is certainly the best known. However,
such a law gives only a superficial description of turbulence because it does not inform us about the
nature of nonlinear interactions, the degree of isotropy, or whether the cascade is direct or inverse.

A much deeper understanding of turbulence can be obtained by considering the presence of waves. The
first theoretical breakthrough was made with the study of capillary wave turbulence (Zakharov &
Filonenko, 1967). Although the system studied is based on Navier-Stokes, some manipulations have to



be performed to obtain a system that describes surface waves, so it is a bit far from the original archetypal
model. The very first example where wave turbulence was applied directly to Navier-Stokes (with only
a mild modification) is rotating turbulence where the Coriolis force is added to the equations (stratified
turbulence is another example but there is no local solution). Interestingly, it is the addition of
complexity that allows us to reach a deep understanding of turbulence. I have developed such a theory
for inertial wave turbulence with uniform rotation (Galtier, 2003 [A19]). Based on the resonance
condition, I was able to show that this turbulence is anisotropic with an energy cascade mainly transverse
to the rotation axis, however contrary to MHD, a weak cascade along the parallel direction is still
possible. I derived the wave turbulence equations for energy and helicity that describe the three-wave
interactions between inertial waves. The exact solution corresponds to an energy spectrum in k> k; 2
with a positive energy flux, which means that the cascade is direct. We can also show that the solution
is local and find the Kolmogorov constant (David & Galtier, 2023 [A103]). Interestingly, in the limit of
super-local interactions, the wave turbulence equation reduces to a simple nonlinear diffusion equation
that is easy to simulate numerically. It reveals an anomalous scaling during the non-stationary phase
with a steep energy spectrum in k;®?. This solution is understood as a self-similar solution of the second
kind. Later, we discovered that the same diffusion equation is also present in a plasma physics model
that describes solar wind turbulence at sub-MHD scales (Galtier & David, 2020 [A87]). This finding
offers the opportunity to learn more about space plasmas through laboratory experiments. Today, several
experiments have been developed to produce inertial wave turbulence and the main properties found
analytically have been measured (Yarom & Sharon, 2014; Monsalves et al., 2020).

Multi-scale solar wind turbulence

The solar wind is a turbulent plasma with magnetic field fluctuations that extend, in the frequency
domain, over more than 8 decades. At 1 astronomical unit, for frequencies f€[10™,10"'JHz the spectrum
in £5° is generally attributed to MHD turbulence (with Taylor's hypothesis f is a proxy of the
wavenumber k). Another power law close to £? is found for f€[1,100] Hz. This corresponds to sub-
MHD scales where the decoupling between ions and electrons is felt and thus where MHD is no longer
valid. Dispersive waves (kinetic Alfvén and whistler waves) are also detected. The possibility of
interpreting this second frequency interval as a new turbulence regime was rarely mentioned before
2000 because space probes were not precise enough to make a clear distinction between an exponential
law and a power law, the former being interpreted as the manifestation of dissipation. It is mainly thanks
to the Cluster/ESA mission that the presence of a second power law was firmly established (Bale et al.,
2005), allowing to seriously consider a theory of turbulence at sub-MHD scales.

In Galtier (2006; [A27]), I proposed a wave turbulence theory based on Hall MHD in order to include
in a simple way (fluid model) the decoupling mentioned above. It is a theory of multi-wave and multi-
scale turbulence covering the MHD and Hall-MHD scales, and where Alfvén, whistler and ion-cyclotron
waves are present. | found the exact solutions to the problem (anisotropic spectra) and recovered the
known results in the large scale limit (Alfvén wave turbulence). The analytical study revealed a
modulated spectral anisotropy at all scales, and the spectral solutions showed a transition — as in the
solar wind — at the scale where the dynamics of ions and electrons begins to decouple with an energy
spectrum that stiffens at sub-MHD scales. Today, it is widely recognized that turbulence can explain the
fluctuations at sub-MHD scales and that Hall MHD is a relevant first (fluid) model to understand solar
wind turbulence. To completement this theory, I derived an exact relation a la Kolmogorov to express
the two-point fluctuations (increment) in terms of the magnetic fluctuations (Galtier, 2008 [A37]). This
exact law reveals also a change of scaling at the ion inertial length where ions and electrons begin to
decouple. Over the last ten years, with young researchers, we have studied this multiscale and multi-
wave problem using 3D direct numerical simulations (Meyrand & Galtier, 2013 [A60]; Meyrand,
Kiyani, Gurcan & Galtier, 2018 [A79]; David et al., 2024 [A106]). The nonlinear interaction between
different types of waves was identified, as well as the coexistence of weak and strong wave turbulence
on the same scale.



Foundation of compressible sub/super-sonic turbulence

A fundamental understanding of compressible turbulence requires going back to the basic concepts and
researching the universal laws governing the dynamics. The importance of compressible effects is
widely recognized in astrophysics. For example, interstellar turbulence is supersonic with turbulent
Mach numbers well above 10 (Hennebelle et al., 2012). This turbulence is undoubtedly at the origin of
the low rate of star formation by acting against gravitational collapse in the manner of a turbulent
pressure. In the solar wind, where the turbulent Mach number is less than unity, it is recognized
(Bandyopadhyay at al., 2020) that compressible turbulence can provide an additional source of heating
and help us to understand why the (ion) temperature decreases so slowly with heliocentric distance. This
is a long-standing problem that I have been working on for 15 years (Galtier, 2018 [A77]).

Seventy years after Kolmogorov (1941), I derived the first compressible exact law for isothermal
hydrodynamic turbulence (Galtier & Banerjee, 2011 [A54]). This statistical law introduces a new type
of term (called source) which is purely compressible and can be interpreted as a global effect: in an
expansion phase, it contributes to decrease the energy transfer rate (the intensity of the cascade), while
in a contraction phase it increases the transfer rate. The exact law has been well verified numerically in
3D at turbulent Mach number 6 (Kritsuk et al., 2013). This publication paved the way for further
theoretical work on plasmas (MHD) with applications to space plasmas (solar wind and Earth’s
magnetosphere) to better estimate the plasma heating (Banerjee & Galtier, 2013 [A58]; Hadid et al.,
2018 [A75]). The most recent 3D direct numerical simulation of isothermal hydrodynamic turbulence
performed at an extremely high spatial resolution of 10048* (Ferrand et al., 2020 [A90]), confirms that
the exact law of compressible turbulence provides a relevant model to explain the observed physics. In
particular, it is shown that the sonic scale separates two turbulence regimes: supersonic and sub-sonic.
In the first case, we have shown that the source term of the exact law dominates, while it is the flux term
in the second case. Moreover, the scaling found is dimensionally compatible with the exact law.

Gravitational wave turbulence and the primordial Universe

The first direct detection in 2015 of a gravitational wave (GW) by the LIGO-Virgo collaboration (Abbott
etal., 20106), a century after their prediction by A. Einstein (1916), is certainly one of the most important
events in astronomy of the last decades. This observation opens a new window onto the Universe called
GW astronomy. Unlike photons, GW are expected to be unaffected by the opacity of the early Universe,
therefore they have the potential to provide a wealth of observational data about this primordial phase.
In modern Universe, shortly after being excited by a source like the merger of two black holes, GW
become quickly linear because their amplitude decreases with the distance of propagation. The situation
was probably different in the early Universe (first second) because GW were presumably significantly
more nonlinear as they had much larger energy packed in a much tighter space. The nonlinear nature of
the GW was pointed out in the past and the possibility to get a turbulent energy cascade of primordial
GW was also mentioned but, until our work, no theory had been developed.

In Galtier & Nazarenko (2017 [A74]), we derived for the first time a turbulence theory in general
relativity for an empty universe and without introducing the cosmological constant. It is a wave
turbulence theory that describes a sea of weak GW interacting nonlinearly. We first proved that three-
wave interactions do not contribute to the nonlinear dynamics and that the theory must therefore be
developed at the level of four-wave interactions (Gay & Galtier, 2024 [A107]). Using the Hadad-
Zakharov (diagonal) metric, we derived the kinetic equations of weak GW turbulence. These equations
conserve energy and wave action for which we have a direct and an inverse cascade, respectively. We
derived the exact solutions (Kolmogorov-Zakharov spectra) and showed that the inverse cascade is
explosive with an anomalous scaling for the wave action spectrum during the non-stationary phase
(Galtieretal., 2019 [A81]; Gay & Galtier, 2025 [A110]). Recently, we published the first direct evidence
of a dual cascade in GW turbulence (Galtier & Nazarenko, 2021 [A96]). This result is based on a direct
numerical simulation of Einstein’s equations. A dual cascade of energy and wave action is reported with
— as expected — a timescale corresponding to four-wave interactions. We show that wave turbulence
becomes strong at large scales with a selective amplification of the space-time metric components during
the inverse cascade. Strong/weak GW turbulence can potentially completely change the commonly
accepted picture of the early Universe and the cause of cosmological inflation (currently considered as



the result of the existence of a hypothetical scalar field called inflaton). Indeed, without introducing a
new ad-hoc physics, it can be shown phenomenologically that strong wave turbulence could provide a
nonlinear inflation mechanism by producing a fast condensation phenomenon eventually leaving a
fossile spectrum (Harrison-Zeldovich spectrum) compatible with the Planck data (Galtier et al., 2020
[A89]). This theoretical scenario can be verified in the future by direct numerical simulations.

Origin of the anomalous dissipation in turbulence

The anomalous dissipation is defined as the non-vanishing of the mean energy dissipation at infinite-
Reynolds number. This property of the turbulence theory is so fundamental that it is often called the
zeroth law of turbulence (Frisch, 1995). Number of experimental or numerical results have confirmed
the zeroth law (Ravelet et al., 2008). The origin of the anomalous dissipation is, however, not rigorously
understood and very often semi-phenomenological argument are used like the one proposed by Taylor
(1935). In the theory of Kolmogorov (1941), the anomalous dissipation is used to derive the so-called
4/5 law for incompressible hydrodynamics. This law can be generalized to other incompressible fluids
as discussed above in the context of MHD (Politano & Pouquet, 1998; Galtier, 2008 [A37]). It was
Onsager (1949) who actually mentioned for the first time the possible origin of an anomalous dissipation
in the loss of smoothness of the velocity field in hydrodynamics. A major breakthrough was achieved
by the mathematicians Duchon & Robert (2000) who derived an exact local form of the energy
dissipation created by a loss of regularity in the velocity field. In particular, they derived the Onsager
anomalous dissipation in terms of velocity increments. Remarkably, the expression found is closely
related to the exact 4/3 law for Navier-Stokes turbulence (Antonia et al., 1997).

The immediate question for our concern is: can we also find an expression for the anomalous dissipation
in incompressible MHD which shares this remarkable property. I have proved that the answer is yes
(Galtier, 2018 [A78]). The mathematical developed was performed on the 3D Hall MHD equations. I
was able to recover the exact law of MHD and Hall MHD (Politano & Pouquet, 1998; Galtier, 2008
[A37]) as the kernel of the anomalous expression. This result is particularly important for space plasmas
because it opens the possibility to study the question of local dissipation since the expression of the
anomalous dissipation does not imply an ensemble average: it is valid for individual realization and
locally in space-time in the sense of distribution (Eyink, 2008). Recently, we have studied this question
using data from the Parker Solar Probe which travels very close to the Sun where discontinuities are
often present. Our study (David et al., 2022 [A99]) reveals that the local heating evaluated with the
expression of the anomalous dissipation can be much higher that the mean heating obtained with the
classical 4/3 law of MHD. We also have studied the heating of the solar wind near Jupiter where strong
shocks have been measured by Voyager. Using a reduced model that generalizes the Burgers equation
to MHD, it was possible to derive an exact solution and to show that the anomalous dissipation is
compatible with the small viscosity/resistivity limit (David & Galtier, 2021 [A94]). In other words, we
proved the zeroth law of turbulence in a reduced MHD model.
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